organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(Propane-1,3-diimino)dibenzoic acid

M. Mohamed Rabile,^a Huan Huang,^a Dipesh Ghosh,^a Doug R. Powell^b and J. David Van Horn^a*

^aDepartment of Chemistry, University of Missouri–Kansas City, 5110 Rockhill Road, Kansas City, MO 64110, USA, and ^bDepartment of Chemistry, University of Kansas, Mallott Hall, Rm 6044, 1291 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA

Correspondence e-mail: vanhornj@umkc.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.042 wR factor = 0.118 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of the title compound, $C_{17}H_{18}N_2O_4$, is presented. The molecule sits on a crystallographic twofold rotation axis. It contains $O \cdots H - N$ intramolecular hydrogen bonds typical of *ortho*-benzoic amino acids; $O \cdots H - O$ intermolecular hydrogen bonds connect the molecules into infinite chains.

Comment

The title compound, (I), was synthesized as part of our effort to produce new ligands for the uranyl cation $(UO_2^{2^+})$ and for structural studies with Cr^{III} . Similar ligands have been shown to adopt an equatorial binding mode when bound to Cu^{II} in the presence of an axial coordinating ligand (Berger & Telford, 2002). In this coordination complex, the parallel geometry of amine N–H bonds enforces dimerization by molecular self-recognition, forming strong intermolecular hydrogen-bonding interactions. The structure determination of (I) was conducted in order to obtain size and stereochemical information. The results of the single-crystal X-ray study are consistent with the stoichiometry and connectivity of the proposed formulation (Fig. 1).

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. The numbering scheme of the asymmetric unit is shown.

Received 17 February 2004 Accepted 25 February 2004 Online 6 March 2004

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Packing diagram for (I). Intermolecular hydrogen bonding through the carboxylate groups is indicated by dashed lines on the central pair of molecules. Hydrogen atoms have been omitted for clarity.

A planar geometry for (I) would place it in a $C_{2\nu}$ or C_{2h} point group. In the solid state, hydrogen-bonding interactions enforce a geometry giving rise to C_2 symmetry; the orientation of the two aromatic rings is gauche, the angle between the planes being 44.5 $(5)^{\circ}$. The molecule sits on a crystallographic twofold rotation axis, and thus only half of the atoms in the molecule are unique. The $N-C_{arom}$ bond [C9-N10 = 1.366 (2) Å] is shorter than the $N-C_{aliph}$ bond [C11-N10 = 1.450 (2) A; Table 1]. The torsion angle between the aromatic ring and the N-methylene groups (C4-C9-N10-C11) is $175.0(1)^{\circ}$ and that of the C2-C4-C9-N10 fragment is $-4.9(2)^{\circ}$. The molecules in the crystal structure are interconnected by O1-H1···O3 hydrogen bonding (Table 2), as shown in Fig. 2. This compound also contains intramolecular hydrogen bonds (N10-H10···O3) between amine and carboxyl groups.

Experimental

The title compound was prepared according to a slight modification of the previously reported method (Sandhu & Verma, 1986). Anthranilic acid (54.8 g, 0.4 mol) was added to 150 ml of ethanol in a 500 ml round-bottom flask. To this solution, 1,3-dibromoethane (20.8 ml, 0.24 mol) was added and the mixture was allowed to reflux overnight. A yellow crystalline compound, including X-ray diffraction quality crystals, was obtained after cooling the reaction mixture or after simple recrystallization. Slower crystallization conditions (*viz*. cooling with a heat sink) led to twinned and clustered crystals. The compound was collected by filtration, washed with hot acetone (2 × 20 ml) and glacial acetic acid (2 × 20 ml), and then dried *in vacuo*. Yield 28%, m.p. 472.3–473.7 K (differs from previous report, 493–494 K). ¹H NMR (d_6 -DMSO): δ 12.82 (*br*, *s*, 2H), 8.37 (*dd*, $J_{\text{HH}} =$ 7.9 and 1.7 Hz, 1H), 7.92 (*ddd*, $J_{\text{HH}} =$ 8.6, 7.0 and 1.7 Hz, 1H), 7.32 (*d*, $J_{\text{HH}} =$ 8.6 Hz, 1H), 7.13 (*ddd*, $J_{\text{HH}} =$ 7.9, 7.0 and 1.0 Hz, 1H), 3.87 (*m*, 4H), 3.08 (*m*, 2H).

Mo $K\alpha$ radiation

reflections $\theta = 2.2 - 26.0^{\circ}$

 $\mu=0.10~\mathrm{mm}^{-1}$

T = 100 (2) K

Block, yellow

 $R_{\rm int}=0.021$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -14 \rightarrow 13$

 $\begin{array}{l} k=-17 \rightarrow 16 \\ l=-11 \rightarrow 11 \end{array}$

+ 0.67P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Cell parameters from 4874

 $0.48 \times 0.17 \times 0.16 \text{ mm}$

1504 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.071P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

1382 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{17}H_{18}N_2O_4\\ M_r = 314.33\\ Orthorhombic, Pccn\\ a = 11.9318 (18) \text{ Å}\\ b = 14.152 (2) \text{ Å}\\ c = 9.0323 (14) \text{ Å}\\ V = 1525.2 (4) \text{ Å}^3\\ Z = 4\\ D_x = 1.369 \text{ Mg m}^{-3} \end{array}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{\min} = 0.954, T_{\max} = 0.984$ 8887 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.118$
S = 1.02
1504 reflections
105 parameters
H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

O1-C2	1.322 (2)	C4-C9	1.416 (2)
C2-O3	1.240 (2)	C9-N10	1.366 (2)
C2-C4	1.464 (2)	N10-C11	1.450 (2)
O3-C2-O1	120.9 (1)	N10-C9-C4	121.5 (1)
O3-C2-C4	123.8 (1)	N10-C9-C8	120.7 (1)
O1-C2-C4	115.2 (1)	C4-C9-C8	117.8 (1)
C5-C4-C9	119.6 (1)	C9-N10-C11	124.6 (1)
C5-C4-C2	118.6 (1)	N10-C11-C12	109.3 (1)
C9-C4-C2	121.8 (1)	C11 ⁱ -C12-C11	112.3 (1)
03-C2-C4-C9	1.3 (2)	C4-C9-N10-C11	175.0 (1)
C1 = C2 = C4 = C9 C2 = C4 = C9 = N10	-1/8.5(1) -4.9(2)	$N10 - C11 - C12 - C11^{\circ}$	175.0 (1)

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O3 ⁱⁱ	0.95	1.69	2.626 (1)	166
N10−H10···O3	0.88	2.01	2.682 (1)	132

Symmetry code: (ii) -x, 1 - y, 2 - z.

H-atom positions were initially determined by geometry and refined by a riding model. H-atom displacement parameters were set to 1.2 times the displacement parameters of the bonded atoms. Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1994); software used to prepare material for publication: *SHELXTL*.

This work was supported by an award from the American Heart Association. The authors thank the National Science Foundation (CHE-0079282) and the University of Kansas for funds to acquire the diffractometer and computers used in this work.

References

Berger, D. J. & Telford, J. R. (2002). Inorg. Chim. Acta, 341, 132-134.

Bruker (1998). *SMART* (Version 5.625) and *SAINT* (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.

Sandhu, G. K. & Verma, S. P. (1986). J. Organomet. Chem. 315, 309-319.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). *SHELXTL*. Version 5. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.